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The problem of bifurcation of the modes of elastoplastic equilibrium of a cent- 
rally compressed rod of cruciform transverse cross section is solved. Use is made 
of the nonlinear differential relations connecting the stress and strain variations 
at instability, obtained within the framework of the model of a linear, anisotro- 

pically self-hardening, plane medium [ 11 and the isotropy postulate of Il’iushin 

[2]. The solution is compared with the already known results [3] following from 
the deformation theory and the incremental theory of plasticity. It is shown that 

the above theories cannot be used in solving the problem under consideration, 
whether it is posed in the Karman’s, or in the Shanley’s formulation. 

We know that the instability in thin-walled elements is accompanied, as a 
rule, by a break in the load trajectory, the angle of break being of arbitrary mag- 
nitude, i.e. the process differs appreciably from the case of simple loading. In 
the vicinity of the break point the relationship between the S’T~SS and strain in- 

crementS depends significantly on the angle of break, consequently this relation- 
ship must be expressed (in contrast to the deformation and incremental theories), 
by nonlinear differential relations. As far as the authors are aware, all attempts 
made to apply such relations obtained in certain versions of the theory of plas- 
ticity (see [4, 51 et al. ) to solving the problems of stability, have encountered 

considerable difficulties of mathematical nature and did not lead to any positive 
results. 

Below we make such an attempt in the course of solving a problem of deter- 
mining the point of bifurcation of the modes of equilibrium of a centrally com- 
pressed rod of cruciform transverse cross section in both, the Kirman’s and the 

Shanley’s formulation. 

1. On the rrlrtionthipr connecting the stress and strain incre- 
msntt in the problem8 on Itability. For the model of a linear, anisotrop- 
ically self-hardening plane medium [l] the relationship between the stress and strain 
increments So and & , respectively, in a close neighborhood of the break point on the 
load trajectory was established in [6, ‘71. A generalization to the three-dimensional 
case was achieved using the isotropy postulate. Three regions of additional loading were 
shown, in which the relation connecting the increments 6a and Se is different (see Fig. 
1 which corresponds to the case, discussed below, of a bending-torsional mode of insta- 

bility of a compressed rod). In zone 1 (angle of break B .< &(a,)) the relation can be 
obtained from the deformation theory of plasticity. An explicit expression for the rela- 

tion 60 - oe and, in particular, the formulas for determining the functions 13” (0,)) and 

3.54 
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p* (a,), are found in [6, ‘71. In zone ZZ (PO < fi <,(B, (co)) the relation 60 - 6~ is non- 
linearly differential and conforms neither to the theory of small elastoplastic deforma- 

tions, nor to the incremental theory of plasticity, while in zone Ill when p E [p* ((TO), 
xl , unloading takes place according to an elastic law. 

The fact that the analytical expressions for the 
relation &I - 6~ are different for each of the re- 

gions of additional loading shown above and the 

awkwardness of the relations obtained in [6, 71, 
made them inconvenient for the straightforward 
application in solving the problems of stability. 
For this reason the authors of [8, 91 derived approx- 

imate expressions for the defining equations near 
the break point, using the same type of analytic 

expressions for all three regions. Below we give 

Fig. 1 

bility of the rod 

these approximating expressions in their final form, 
written here for the case of bending-torsional insta- 

(I.19 

Here the coefficients pi and bi (i = 0, 1, 2) depend on the material and the magnitude 

of the stress o0 at the break point (Fig. 1). In particular, for the aluminium alloy .Mr 

( l ) it was obtained 

‘/a t,” = 23.98 a,? - 22.78 a, - 7.19, 0, =z 55.95 a02 - 26.87 a, + 18.04 

Q = 22.11 a$ + 6.42 a,, - 5.06, tr, = -59.69 ac? - 13.86 a0 + 34.09 

b, = -6.63 ai -- 21.2i a, + 0.23, G r 0.273.106 kg/cm2 (1.29 
z, = 325 kg/cm2,G ; k = 17, us = Jfzr, 

Values of the coefficients ni and bi for the aluminium alloys AI-10 and A-16 are given 

in 191. 
The relation between the parameter a,, and the quantity o0 / uS is given by 

Z, (2 a& - 2 a, Z1 (2 a,,) In (0.21 / ao) = (ss/ cro (1.3) 

We note that the indicated version of the theory was confirmed experimentally, within 
the range of small elastoplastic deformations, when aluminium alloys were loaded along 
two-branch trajectories [ 10, 111. 

2. Approximrtc solution of the problem in the Klrmin’s for- 
mulation. Let us consider the problem of finding the point of bifurcation of a com- 

pressed rod of cruciform transverse cross section (Fig. 2) in the Kbrmin’s formulation 
6P = 0. The system of equations determining a nonrectilinear state of equilibrium of 
the rod has the form [12] 

*) Ed i t or’s Note. The symbols for aluminium alloys appearing in this paper are 
given in the original Russian nomenclature. 
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(2.1) 

(x2 -+ y?) dF 

F 

where the variations of the internal stresses are 

6N = 
s 

k,tlF, &%I, = 
s 

yk,dF, &Vu = - j xb,dF 

F t" F 

6!11, = \ (.CbT,, - !IfiZ,,) CEfi 

1: 
(2.2) 

while the variations of the curvature and the relative angle of torsion are, respectively, 

p = -d2v / dz2, q = d2u / dz=, 0 = dv I dz 

Here u and v are the components of the translation of the points on the rod axis in the 
ox and OY direction, and v is the angle of torsion. 

Following the theory of thin-walled rods [12] with null sectorial characteristics, we 
set 

8Ez = 6E0 - ‘1x + py, 6y,, -= -2 By, syll, = 2 ox (2.3) 

where 6.eZ, by,, and 6y,, are the variations of the axial and shear strain in the trans- 
verse cross section and fir,, is the variation of the deformation of the rod axis. The sys- 

1 

L- h- 

Fig. 2 

tem (2.1) - (2.3) together with (1.1) forms a complete 
system of equations for studying the problem of bifur- 
cation of the modes of equilibrium of a centrally com- 
pressed rod for 6P = 0. 

We first consider an approximate solution of this 

problem. As we know, within the elastic limits a cent- 
rally compressed rod of cruciform transverse cross sec- 
tion may (depending on the geometrical dimensions) 
lose its stability under pure bending, or pure torsion. 
We shall assume for the time being that outside the 
elastic limits two modes of instability are also possible, 
the first one occurring when the torsional strain predo- 
minates the bending strain so that 

J 
be :I,, 4 6y”“x 

(SY = (b2 + &J")7 

and the second one taking place when the bending strain 

predominates the torsional strain (6ymax 4 6.syx). 
In both cases we neglect the quantity p = q2 111 q2 
which is small compared with unity. (Here TI assumes 

the value of 6~ Fax / 6ymax or of SymaX / 6ein”x depending on which case is being con- 
sidered). 

let us consider the first mode when 11 = 6~:~~’ /6ymax. Using the first and fourth 

equations of (2.1) we obtain, within the indicated accuracy, 

(2.4) 
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k i $ blb3h0 - 1/%bibzh& 
c 

_!!_ 
lOI I 

= Pr20’ 

The variationsof p and Q do not appear in the above equations. This suggests that the 
torsional mode of instability is not accompanied, as in the elastic region, by the bending, 
and we have p = Q = 0. The present case differs from the elastic case in the fact that 

outside the limits of elasticity the twisting is accompanied, in accordance with (2.4). 

by additional compression of the rod axis. This result which is obtained from the rela- 

tions (1.1) is mentioned neither by the deformation theory nor by the incremental theory 
of plasticity, although it is well confirmed by experiments [13]. Substituting (2.4) into 

(2.5) and taking into account the fact that 6’ E& 0, we obtain the final equation defining 
the critical stress u* in the K&man’s formulation 

26* 
k C 

bi -gi (a,, - 2a2)]-1 = (;)” (6, =p*/F) (2.6) 

Here ai = ai (c*) and bi = bi (a*) are known functions. For the particular case of the 
alloy AMI these functions are determined by the relations (1.2) and (1.3). 

We note that the formula (2.6) has been obtained independently of the form of the 

boundary conditions, i. e. the critical load in the case of torsional mode of instability is 
determined, as in the elastic region, independently of the manner in which the rod is 
clamped. 

In deriving (2.6) the quantity TV = q2 In tl2 (tl = &Fax / 6ymax) was assumed small 
compared with unity, and therefore it was neglected. We shall now obtain its estimate. 
In the case under consideration JI = 4 = 0 and 6~:“~ = 6e,,, hence using (2.4) we ob- 
tain _rl=1/3 

12ai 
(no - 2az) (2.7) 

Numerical computations performed for the aluminium alloy AMr show that for o* < 

1.3 u, the quantity p < 0.07. 
Let us now consider another case, i. e. assume that tl = 6ymax / Gay Q 1 (later we 

shall show that q=O). Neglecting the quantity p= T$ In @ on assumption that it is 

small compared with unity, we obtain from the first three equations of (2. l), with (2.2) 
and (1.1) taken into account, that 

4al-- (9+az)(L$-+g)+ ($+a2)(!j.$+p)=O 

Gk$[+albh3 q-($+aa)(bh26a - +!$)]=Pp 

;k&[;aibhap-((%+a2)(6h86eo- ;+$)I = Pp 

(2.8) 

(2.9) 

We see that 6 does not appear in the above equations, and the equations determine the 

pure bending mode of instability of a centrally compressed rod. Consequently 11 = p = 
0. In this case already known formulas can be used to find u* . 

In particular, when both ends of the rod are hinged, we have 

6, = 4n=EEl / h2 ( fl + JfzJ, h=l~~ 

where 3, denotes the flexibility of the rod and Et = da / de is the tangential modulus 
defined from the stress-strain diagram u - e for uniaxial tension or compression. For 
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the practical determination of the critical load and explanation of the possible mode 
of instability, one must use the expressions (2.6) and (2.9) and choose the smaller of the 
two values of o* obtained. 

3, Exact rolution of the problem of torsional mode of inctrbi- 
lity. Comprriron of the rcnultr obtained with those already 
known In literature, In Sect. 2 it was shown that the torsional mode of instabi- 
lity is accompanied by an additional shortening of the rod axis, without however any 
bending, i. e. p = q = 0. We shall use this result to construct an exact solution for the 
problem on the torsional mode of instability, without restricting the quantity p. 

The first and fourth equation of (2.1). relations (1. l), (2.2),(2.3) and the condition 
p = 4 = 0 , yield 

4U&” + (2az - a”) 6&,* - l/r 2 (6~~2 + a~) !$ ln ;Fp* f be = 0 
e,* - b0 

; k $ $ /@bJj - Ghbl’b;! ‘!!! + 3 lC?hb2ba g ln 
C 

Vz8%* + b0 = p+e 
mSe,* - b0 1 (3.1) 

(8Eu* = ?rW + (be / v+) 
Setting now 6 + 0 and 6’ + 0 and denoting &,, / b@ = s we obtain, from the second 
relation of (3. l), the following equation for the critical stress 0,: 

- b1 3 v3s2 + 1+ 9J0- 1 - J6-bzs 2 &.3 ln v3s” + 1 + 
1/3sa + 1- 

(3.2) 
1 

The quantity s can be found from the first equation of (3.1) which can be rewritten as 

S Jf& + 2 (2~ - ao) 1/3s” + 1 -- 3 (6~ + no) s’) 111 1/3s?+i+l =. 
V3s” $- 1 - 1 

(3.3) 

The actual computations of the relation (0, / %) - (h / 6) were performed for the 

aluminium alloy AMI? on a computer according to the following scheme. For the given 
o, the value of s was determined from (3.3) using the Newton’s method and then the 
ratio h / 6 was found from (3.2). 

The relation (n,/ a,) - (h / b) given by 
(3.2) and (3.3) is depicted on Fig. 3 by the 
solid line 1. The dashed line 2 corresponds 
to the approximate formula (2.3). Line 3 
depicts the formula o* -~ (b / h)” G obtained 
in [S] within the framework of the incremental 

theory. Line 4 is based on the deformation 

11 

region. 

A 
theory which leads to the expression u* 

15 19 R\ 
(b /h)l G,, where G, =y ‘tOctl ~o,;is the secant 

,/I modulus on the octahedrai shear versus octa- 

Fig. 3 hedral stress diagram. The point A corresponds 
to the transition from the elastic to the plastic 

Line 5 in Fig. 3 helps to determine the effect of additional compression be, of the 
rod axis on the quantity B* in the torsional mode of instability. It is constructed from 
Eqs. (3.2) and (3.3) for s = 0 (s = 6~,, i btl). 

We note that the corresponding plots for the aluminium alloys .\I<-6 and J-lti are 
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qualitatively identical to those given in Fig, 3 for the alloy AMT. 

4. Solution of the problem in the Shrnley’r formulrtfon. The 
solution in the Karmdn’s formulation (6P == 0) obtained above shows that neither the 

deformation theory nor the incremental theory yield satisfactory results when the rod is 
in the torsional mode of instability with well developed plastic deformation. First let 

us deal with the problem whether it is possible to use the deformation theory to solve the 
problem in the Shanley ‘s formulation, i. e. when 6P > 0. We assume that increase in 
the external load leads to the angles fi of the break in the load trajectory (Fig. 1) being 
smaller than the limiting angle fi,, at which the deformation theory may apply, at all 
points of the transverse cross section of the rod, i.e. p < & (a,) (PO < ,“c / 2). Here we 
can write the following expressions for the variations in stress 

65, = EJkf, 6x,, = GsWrr, 8zyz = G&T,, (4.1) 

Next we replace the first and the fourth equation of (2.1) by the following expressions 

(here we make use not only of the physical. but also of the geometrical nonlinearitvl 

6N = 6P, $ (S.W,) = P0’0 (0) 
(2” + ~2) dE 

[I + (23 + y”) ep 
(4.2) 

where 6iV and 6&f, are determined by the quadratures (2.2). Using (4.2) and taking into 
account (4.1). we obtain 

E!~E~ = 60, G = G,Zd / CI, (e), o = P / F 

60 = 6P I F, Id = 4/s hb3 

(4.3) 

The second formula of (4.3) yields the following expression for the ratio &I / 6t = 6u/ 
(G,6y) near the break in the trajectory (Fig. 1) 

(4.4) 

On passing to the limit as 8 -+ 0 we obtain lim &J/ 6~ = 0, i.e. the angle p = arctg 

(6% / 60) = n / 2. But this contradicts our previous assumption that the angles p are 
bounded by the limiting angle fi,, < n / 2 which defines the limits of applicability of 
the deformation theory. Consequently in the Shanley’s formulation the nonlinear differ- 

ential relations (1.1) must also be used in solving the problem. Repeating the compu- 
tations made in Sect. 2, we arrive at the following conclusion. In place of (2.4) we have 

Equation (2.5) remains unchanged. Noting that d (6P) / dz = 0, we find that in the 

Shanley’s case the formula for the critical load obtained from (2.5) and (4.5) is iden- 

tical to (2.6) which was obtained earlier for the KgrmAn’s case. Thus in the case of the 
torsional mode of instability of a compressed rod of cruciform transverse cross section 

the critical loads coincide in both the Karman’s and the Shanley’s formulation. 
If instability OCCUTS in the bending mode, then (2.9) must be replaced by o* = n2Ei : 

h” when the problem is being solved in the Shanley’s formulation. 
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